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概要
特異な非斉次項を有する冪乗型半線形熱方程式の可解性を考える. 具体的には，非斉次項の属
する関数空間であって，方程式の時間局所解を構成できるようなもののうち，なるべく広いもの
を取ることを考える. 本講演では解の空間として「Lorentz 空間に基づくMorrey空間」を導入
し，「最大の可積分指数」を有する空間での解の存在を示す. また，この空間の導入によって得ら
れる利点を既存の研究と比較しつつ説明する.

1 考える問題・解の定義
次の非斉次項付き半線形熱方程式の Cauchy 問題を考える．{

∂tu+ (−∆)
θ
2 u = |u|γ−1u+ µ, x ∈ RN , t ∈ ]0, T [ ,

u(x, 0) ≡ 0, x ∈ RN .
(P)

ここで u = u(x, t) は未知関数，γ > 1, N ∈ Z⩾1, T > 0であり，θ > 0に対して (−∆)
θ
2 は RN 上

の分数冪ラプラシアン

(−∆)
θ
2 f(x) := F−1

[
|ξ|θFf

]
(x), x ∈ RN

を表す*1．F と F−1 はそれぞれ，RN 上の Fourier変換・逆変換である．非斉次項 µは，一旦 RN

上の緩増加超関数としておく．本研究の目的は，問題 (P)の時間局所解が存在するための，µの詳細
な条件について論じることである．つまり，非斉次項 µにどのような条件を仮定すれば，時間局所解
が存在するのか，ということ (十分条件)や，逆に時間局所解が存在するために，µはどのような条件
を満たしている必要があるか，ということ (必要条件)について考える．
次に，解の定義を述べる．可測関数 u = u(x, t)が区間 ]0, T [上の問題 (P)の解であるとは，以下

の積分方程式をほとんど至る所の点 (x, t) ∈ RN × ]0, T [で満たすことを言う．

u(x, t) =

∫ t

0

S(t− τ)µ(x) dτ +

∫ t

0

S(t− τ)
[
|u|γ−1u(·, τ)

]
(x) dτ (1)

( =: I[µ](x, t) + J [u](x, t) =: K[u;µ](x, t)).

∗ E-mail:alice2dot718@gmail.com
*1 θ = 2の場合は，通常のラプラシアンと一致する．以下の内容は θ = 2の場合にも新しい結果を含むが，一般の θ > 0

を考えた場合に発生する難しさも存在することを注意しておく．



ここで，f ∈ S ′(RN )と，t > 0に対して，S(t)f := F−1
[
exp

(
−t|ξ|θ

)
Ff

]と定めている (分数冪熱
方程式の解作用素である)．式 (1)を用いて可解性を議論するのは標準的である (形式的には，例えば
方程式を用いて式

∫ t

0

∂

∂τ
[S(t− τ)u(·, τ)] dτ を計算すれば (1)を得る)．なお，関数 u(x, t)が問題

(P)の「時間局所解」であるとは，ある T > 0が存在して，uが区間 ]0, T [上の問題 (P)の解である
ことを意味する．
式 (1)によると，問題 (P)の解を見つけるためには，作用素 Kの，ある関数空間 X における不動

点を探せばよい．この空間 X は，方程式の非線形項による要請からある程度決まるが，「可解な非斉
次項 µのクラスで，なるべく広いものは何か？」という本研究の目的を踏まえると，解の属する空間
X も，なるべく広く取っておいた方がよい；µのクラスを広げるということは，即ち I[µ]の X ノル
ムをより小さい µのノルムで評価するということだからである．

2 既存の結果
縮小写像の原理に基づく，Lebesgue空間 Lp 上での問題 (P)の可解性の証明を復習するとともに，

先行研究を紹介する．

2.1 Lp の枠組みで
半線形熱方程式の可解性では，対応する線形熱方程式の解作用素の減衰評価が重要である．

命題 1. l ∈ ]0, 1], p ∈ [1,∞]とする．ある正定数 C が存在し，不等式∥∥∥S(t)f ∣∣∣ Lp/l(RN )
∥∥∥ ⩽ Ct

−N(1−l)
θp

∥∥f ∣∣ Lp(RN )
∥∥

が任意の f ∈ Lp(RN )に対して成立する．

これを用いて，冪乗によって生じる指数のずれを戻せばよい．これによると，例えば非線形指数 γ

が条件 γ > N/(N − θ) (with θ < N)を満たす場合は，p = N(γ− 1)/θのときの Lebesgue空間 Lp

が解の空間として「最大」であることが推察される．実際，命題 1を用いて∥∥∥∥∫ t

0

S(t− τ)
[
|u|γ−1u(·, τ)

]
(x) dτ

∣∣∣∣ Lp(RN )

∥∥∥∥ ⩽ C

∫ t

0

(t− τ)−
N(γ−1)

θp

∥∥∥|u|γ−1u
∣∣∣ Lp/γ(RN )

∥∥∥ dτ

⩽ C

∫ t

0

(t− τ)−
N(γ−1)

θp dτ sup
0<t<T

∥∥u(·, t) ∣∣ Lp(RN )
∥∥γ

と評価できるが，この右辺の積分が収束するためには，条件 p > N(γ − 1)/θ が必要である*2．この
ような計算ができる場合は，解の属する空間を時空のノルム ‖u | X‖ := sup0<t<T ‖u(·, t) | Lp‖ で
定めて，X における適当な閉球 (同じノルムで完備距離空間になる)上で Kが縮小写像となっている
ことを示せば，解の存在がわかる．

*2 勿論 2つの Lebesgue空間の間に包含関係は無いが，局所的な特異性のみを見て L1 が 1番「広い」と言う．



2.2 先行研究
続いて，特に非斉次項の空間局所的な特異性の強さと可解性の関係 (非線形放物型方程式に対する

可解性の問題では，このような「最適特異性」を追求する研究が近年は盛んである．初期値問題に関
しては，[3]を参考のこと)について論じている先行研究を紹介する．
以降，時折

γ∗ :=
N

N − θ
(0 < θ < N の場合), γ∗ := +∞ (θ ⩾ N の場合)

という記号を用いる．これは Serrinの臨界指数と言われ*3，γ > γ∗ の場合を Serrin優臨界などと
言う．以下で見るように，問題 (P)の可解性の様子は，非線形指数 γ と γ∗ の大小に応じて，場合を
分けて論じられることが多い (このことについて，臨界指数を境に全く別の問題となっているのだ，
と主張してもよいが，一方で何らかの統一的な枠組みを用意できないか？ということも個人的には気
になっていることである)．また，次の関係が成り立つことに注意しておく：

N(γ − 1)

γθ
> 1 ⇔ γ > γ∗.

比佐–石毛–高橋 (2020)によって，以下のことが得られている：

定理 2. 0 < θ ⩽ 2とする．以下を満たすような定数 A > 0が存在する：

(1) γ < γ∗ の場合．RN 上の非負値 Radon測度 µが，或る T > 0に対して局所増大条件

sup
x∈RN

µ
(
B(x, T 1/θ)

)
⩽ AT

N
θ − γ

γ−1

を満たすとき，問題 (P)の区間 ]0, T [上の解が存在する．
(2) γ ⩾ γ∗ の場合. RN 上の非負値可測関数 µ : RN → R が或る C0 > 0に対して

µ(x) ⩽

A|x|−
θγ

γ−1 + C0 if γ > γ∗,

A|x|−N
[
log

(
e+ 1

|x|

)]−N
θ

+ C0 if γ = γ∗,

を満たすとき，問題 (P)の区間 ]0, T [上の解が存在する． //

定理 2.(1)は，一様局所 Lebesgue空間 Lγ
ul における縮小写像の原理を用いて証明されている．一

方，(2)は，(積分)方程式に対する優解の構成によって証明されている．
比佐–石毛–高橋 [4]は，非斉次項に対する必要条件の結果も示している：

定理 3. 問題 (P)の非負値時間局所解 uが存在するならば，或る定数 Ai > 0に対し，

sup
x∈RN

µ(B(x, σ)) ⩽ A0σ
N− θγ

γ−1 for σ ∈
]
0, T 1/θ

]
*3 楕円型に由来する臨界指数である．Serrin優臨界条件下では Hardy–Littlewood–Sobolevの不等式や，Morrey空間

(後述)における Adamsの不等式などによって，半線形楕円型問題の可解性を議論できる．



が成り立つ．加えて，γ = γ∗ の時は，

sup
x∈RN

µ(B(x, σ)) ⩽ A1

[
log

(
e+

T 1/θ

σ

)]1−N
θ

for σ ∈
]
0, T 1/θ

]
が成り立つ． //

γ > γ∗の場合に，後述するMorrey空間の言葉を用いて表現すると，関数としては µ ∈ M
N(γ−1)/γθ
1

が必要であるということを主張している．Serrin臨界の場合には，対数関数による補正が出てくるこ
とが興味深い点であるが，本研究では対数型特異性については立ち入らない．定理 3において，解に
対する非負値の仮定は必須である (十分条件の方は，実は外すことができる)．
Serrin臨界・Serrin優臨界条件下での縮小写像の原理を用いた可解性の証明においては，精緻な結

果を出すためには臨界型の積分評価をする必要がある (2.1節における計算を思い出そう)．そこで，
現状では「補間指数無限大の実補間空間が閉じているような関数空間族」を用いることで可解性の証
明が行われている．石毛–川上–高田 [6]は，以下のことを得た：

定理 4. 0 < θ ⩽ 2とせよ．

1. γ > N/(N − θ) の場合：一様局所 Lorentz 空間 L
N(γ−1)/γθ,∞
ul に属する小さい µ に対して，

問題 (P)の時間局所解が存在する．
2. γ = N/(N − θ)の場合：Zygmund型空間 L1,∞

ul (logL)(N−θ)/θ(ここでは触れない)に属する
小さい µに対して，問題 (P)の時間局所解が存在する． //

定理 4 の証明の鍵は，Statement に現れている一様局所 Lorentz 空間や，一様局所 Zygmund 型
空間 (対数型特異性を扱うために [5]によって導入された空間である)において，実補間についての性
質 X ⊃ (X0, X1)κ,∞ が成立することを示し，Meyer や Yamazaki に端を発する臨界型不等式を確
かめることである．本研究では Zygmund型空間には触れないが，その代わり，Serrin優臨界 (この
reportでは説明しないが，劣臨界も)条件における可解性の結果をより精密化する．その前に，先行
研究中に複数の関数空間が出てきたので，次の節で関数空間の復習をすることにする．

3 局所可積分関数の空間
解の属する関数空間として Lorentz–Morrey空間を導入し，そこ上での非線形評価を行う，という

のが本講演の概要である．まず，(局所一様)Lorentz空間や実補間，Morrey空間について復習する．

3.1 Lorentz空間，一様局所空間，実補間
p ⩾ 1とし，関数 f ∈ Lp(RN )を取る．Chebyshevの不等式より，任意の λ > 0に対して

λpαf (λ) := λp
∣∣{x ∈ RN

∣∣ |f(x)| > λ
}∣∣ ⩽ ∫

RN

|f(x)|p dx

が成り立つ．



定義 5. p ⩾ 1とする．Lorentz空間 Lp,∞*4とは，以下の準ノルム

‖f | Lp,∞‖ := sup
λ>0

[λpαf (λ)]
1/p

が有限となるような可測関数 f 全体からなる空間である．また，一様局所 Lorentz空間 Lp,∞
ul とは，

以下の準ノルム
‖f | Lp,∞

ul ‖ := sup
z∈RN

∥∥fχB(z,1)

∣∣ Lp,∞∥∥
が有限となるような可測関数 f 全体からなる空間である．ただし B(a, r)は中心 a ∈ RN , 半径 r > 0

の開球であり，E ⊂ RN に対して，χE は E の定義関数を表す．

• ‖f | Lp,∞‖ は準ノルムだが，p > 1 の場合は，同値なノルムの存在を証明できるため，記号
‖·‖を濫用し，ノルム空間として扱う．

• p > 1のとき，Lp,∞, Lp,∞
ul は Banach空間である．

• 上の計算から，連続埋め込み Lp,∞ ⊃ Lp, Lp,∞
ul ⊃ Lp

ul が成り立つ．
– これは真包含である．有名な例として，斉次関数 |x|−N/p ∈ Lp,∞ \ Lp が挙げられる．

• その他の「一様局所 X 空間」も，同様に定義する．

例 6. 0 < δ < 1とする．1変数関数 x−δ
+ は Lorentz空間 L1/δ,∞(R)に属する．一方で，2変数関数

x−δ
+ y−δ

+ は，どんな Lorentz空間にも属さない．このような関数 (特異集合が点的でない)は，次の節
で述べるMorrey空間を用いると，うまく扱える (ここで，x−δ

+ := 0 (x ⩽ 0), x−δ
+ := x−δ (x > 0))．

次に，実補間の言葉を導入する．以下の内容は，書籍 [1]を参考にした．

定義 7. X0 と X1 を，和空間が定義できる準-Banach空間とする．f ∈ X0 +X1 と λ > 0に対し，
K(f, λ;X0, X1) := inf

f=f0+f1
f0∈X0, f1∈X1

{
‖f0 | X0‖+ λ ‖f1 | X1‖

}
.

と定義する．κ ∈ ]0, 1[，q ∈ ]0,∞]とする．実補間空間 (X0, X1)κ,q とは，量

∥∥∥f ∣∣∣ (X0, X1)κ,q

∥∥∥ :=


(∫ ∞

0

(
λ−κK(f, λ;X0, X1)

)q dλ

λ

)1/q

for q ∈ ]0,∞[ ,

sup
λ>0

λ−κK(f, λ;X0, X1) for q = ∞

が有限となる X0 +X1 の要素全体である．

• X0, X1 が Banachで，q ⩾ 1の場合は，(X0, X1)κ,q も Banachとなる．
• Lorentz空間に対して，以下のことが成り立つ：p0, p1 ∈ ]0,∞[, p0 6= p1 を取る．q ∈ ]0,∞],

κ ∈ ]0, 1[ とする. 指数 p ∈ ]0,∞[ を，式 p−1 = (1 − κ)p−1
0 + κp−1

1 で定める. このとき，
(Lp0,q0 , Lp1,q1)κ,q = Lp,q が任意の q0, q1 ∈ ]0,∞]に対して成立 [1, Theorem 5.3.1].

• 実は局所一様 Lorentz空間についても，上と同じ指数の仮定の下，(Lp0,q0
ul , Lp1,q1

ul )
κ,q

⊂ Lp,q
ul

が成り立つ (演習問題とする)．

*4 弱-Lp 空間とも言う．一般の Lorentz空間 Lp,q は，幾つか方法があるが，減少再配列 f∗ というものを用いて定義さ
れる．詳しくは [1]を参照．なお，Lp,p = Lp であることと，定義 7の後に述べたことを組み合わせることで，p > 1

のときに Lp,∞ が Banachであることがわかる．



3.2 局所Morrey空間
今度は 1 ⩽ q < pなる数を取り，f ∈ Lp,∞ の球上での q 乗積分を考えてみる．球を指定するため

に，中心 z ∈ RN と半径 R > 0を取る．積分の layer-cake表現から，任意のM > 0に対して∫
RN

|fχB(z,R)(x)|q dx ∼
∫ M

0

λq−1αfχB(z,R)
(λ) dλ+

∫ ∞

M

λq−1αfχB(z,R)
(λ) dλ

≲ RN

∫ M

0

λq−1 dλ+ ‖f | Lp,∞‖p
∫ ∞

M

λq−1−p dλ

∼ RNMq + ‖f | Lp,∞‖p Mq−p

が得られ，1/q 乗してM について最適化することで，次の不等式を得る：

R
N
p −N

q

∥∥fχB(z,R)

∣∣ Lq
∥∥ ⩽ C ‖f | Lp,∞‖

定義 8. 1 ⩽ q ⩽ pとする．Morrey空間Mp
q とは，ノルム∥∥f ∣∣ Mp

q

∥∥ := sup
R>0

sup
z∈RN

R
N
p −N

q

∥∥fχB(z,R)

∣∣ Lq
∥∥

が有限となるような f ∈ L1
loc 全体からなる空間である．また，局所*5Morrey空間Mp

q とは，ノルム∥∥f ∣∣ Mp
q

∥∥ := sup
0<R⩽1

sup
z∈RN

R
N
p −N

q

∥∥fχB(z,R)

∣∣ Lq
∥∥

が有限となるような f ∈ L1
loc 全体からなる空間である．

上で見た計算 (を，少し修正すること)と Hölderの不等式から，1 ⩽ q0 < q1 < pに対して

Mp
q0 ⊃ Mp

q1 ⊃ Lp,∞, Mp
q0 ⊃ Mp

q1 ⊃ Lp,∞
ul

が成り立つ．先ほどの先行研究において，(正値)解の存在のためには µ ∈ M
N(γ−1)/γθ
1 が必要だと

いうことがわかっていたが，現状最善の十分条件は，µ ∈ L
N(γ−1)/γθ,∞
ul である (γ > N/(N − θ)の

場合)．つまり，(局所)Morrey空間の第 2指数に関して，可解性の必要条件と十分条件の間にギャッ
プがあり，丸ごと空いているという状況である．本研究ではこの部分を埋め，M

N(γ−1)/γθ
Q (Q > 1)

に入っている非斉次項に対しては，時間局所解が存在する (定理 12)ことを示した．
これは実際に技術的なレベルでの困難を含んでいる．というのも，現状関数空間を用いた問題 (P)

の可解性証明では，解の属する空間が，補間指数無限大の実補間で閉じる性質を有していることが
必要であった [6]．しかし，Morrey 空間は実補間とあまり整合しないことが知られている．実際，
κ ∈ ]0, 1[と (p−1, q−1) = (1− κ)(p−1

0 , q−1
0 ) + κ(p−1

1 , q−1
1 ) に対して,

Mp
q ⊃

(
Mp0

q0 ,M
p1
q1

)
κ,∞ ⇔ q0 = q1(= q)

である (Lemarié-Rieusset [9], Theorem 3(v))．つまりMorrey空間の実補間では，2つの指数が連
動せず，これが非線形評価を不可能にしている．これに対しMorrey空間の基礎空間を取り替えるこ

*5 「局所」というのは「R ⩽ 1」という制限を表している．文献によっては異なる空間を指している場合があるので注意．



とで，Morrey空間における実補間の性質を回復させ，局所Morrey空間上での可解性を証明したの
が，本論文の新規性の 1つである*6．
ここで「Morrey 空間の第 2指数とやらに拘っているが，そこを埋めて何が嬉しいのだろうか？」

という意見が出るのは尤もなことであると思われる．「こういうことを私は面白がってやっているの
です」と答えて済ませたい所だが，次のような意味で，よいことがある：先ほどの包含の列

Mp
q0 ⊃ Mp

q1 ⊃ Lp,∞
ul with 1 ⩽ q0 < q1 < p

において，包含は全て真包含であることが，具体的に関数を構成することで示せる (その一例として，
手前味噌だが [10, Proposition B.1]を挙げる．また紙幅の関係上，局所可積分関数の話のみ記すが，
実は Besov型空間というものを考えることでより広範な非斉次項に対して解の存在を示すことがで
きるようになり，Morrey空間の「豊かさ」がより発揮される)．

3.3 一般化Morrey空間
p > 0 とし，X を RN 上の可測関数からなる準-Banach 空間とする．関数 f に対し，fR(x) :=

f(Rx)と書く．局所 X-Morrey空間Mp
X を，準ノルム

‖f | Mp
X‖ := sup

0<R⩽1
sup
z∈RN

R
N
p

∥∥(fR)χB(z,1)

∣∣ X∥∥
の値が有限となるような f 全体として定義する．特に，X = Lq,∞ として得られる X-Morrey空間
を Lorentz–Morrey空間と呼び，Mp

q,∞ と書く．準ノルムを次のように変形できることに注意せよ．∥∥f ∣∣ Mp
q,∞

∥∥ = sup
0<R⩽1

sup
z∈RN

R
N
p

∥∥(fR)χB(z,1)

∣∣ Lq,∞∥∥
= sup

0<R⩽1
sup
z∈RN

R
N
p −N

q

∥∥fχB(z,R)

∣∣ Lq,∞∥∥ .
1 < q ⩽ pの時は，Mp

q,∞ は Banach空間である．また，明らかにMp
q,∞ ⊃ Mp

q である*7．

命題 9. [10, Proposition 2.10] 2p−1 = p−1
0 + p−1

1 なる数 pi ∈ ]0,∞[ を取る．準 Banach 空間 X,

X0, X1 は，連続埋め込み X ⊃ (X0, X1)κ,q をみたすとする．このとき，Mp
X ⊃

(
Mp0

X0
,Mp1

X1

)
κ,q
が

成立． //

特に，Xi = Lqi,∞ (i ∈ {, 0, 1} , 2q−1 = q−1
0 + q−1

1 ) としてこの命題を使う．1 < qi ⩽ pi であれ
ば，出現する Lorentz–Morrey空間は全て Banachである．

3.4 J [u]の評価
前節で紹介した Lorentz–Morrey空間と，その実補間の性質を用いて，J [u]に対する臨界型評価を
確立する．Morrey空間が有効に現れる，Serrin優臨界の場合を考える．

*6 微妙な話になるが，Lorentz–Morrey 空間の predual というものを用いることで，同じように実補間の困難を回避し
た論文がある [2]．しかし，この論文では非局所空間を扱っており，その証明では，局所Morrey空間を扱えていない．
加えて本研究では直接的な方法で実補間の性質を示すため，predualについてよくわかっていない空間をMorrey空間
の基礎として用いることもできる．

*7 Morrey空間を X として取ることには意味がない [10, Proposition B.2]ので，安心されたい．



命題 10. γ > γ∗ とし，γ < q ⩽ p := N(γ − 1)/θ とする．X := L∞(0, T ;Mp
q,∞)とおく．この時，

正数 C が存在して，

‖J [u] | X‖ ⩽ C ‖u | X‖γ

が任意の u ∈ X に対して成立する． //

命題 10の証明．
u ∈ X を取る．η > 0を任意とし，J [u]を次のように分解する：

J [u](x, t) =

∫ ∞

0

χ]0,t[(τ)S(τ)
[
|u|γ−1u(·, t− τ)

]
dτ

=

(∫ η

0

+

∫ ∞

η

)
χ]0,t[(τ)S(τ)

[
|u|γ−1u(·, t− τ)

]
dτ

=: J0
η [u](x, t) + J1

η [u](x, t).

指数 r < k(r)を以下のように取る (1 < p/γ は Serrin優臨界条件と同値である)：

1 <
p

γ
< r < p =

N(γ − 1)

θ
< k(r),

1

p
=

1/2

r
+

1/2

k(r)

先ほど紹介した実補間Mp
q,∞ ⊃

(
Mr

qr/p,∞,M
k(r)
qk(r)/p,∞

)
1/2,∞

を，分解 J [u] = J0
η [u] + J1

η [u] と組み
合わせることで，∥∥J [u] ∣∣ Mp

q,∞
∥∥ ≲ sup

λ>0

1√
λ

inf
J の分解

{∥∥∥g ∣∣∣ Mr
qr/p,∞

∥∥∥+ λ
∥∥∥h ∣∣∣ Mk(r)

qk(r)/p,∞

∥∥∥}
⩽ sup

λ>0

{
1√
λ

∥∥∥J0
η [u]

∣∣∣ Mr
qr/p,∞

∥∥∥+
√
λ
∥∥∥J1

η [u]
∣∣∣ Mk(r)

qk(r)/p,∞

∥∥∥}
と評価される．分解を決める η は λに依存してよいことに注意しておく．
ここで分数冪熱半群 S(t) の減衰評価を適用する．紙幅の都合上述べないが，Lorentz–Morrey 空

間を基礎とする Besov空間を考えることで，S(t)の Lorentz–Morrey空間上の減衰評価が得られる：

命題 11. [10, Proposition 2.16] 1 < q ⩽ p < ∞, l ∈ ]0, 1]とする．定数 C > 0が存在して，∥∥∥S(t)f ∣∣∣ Mp/l
q/l,∞

∥∥∥ ⩽ C
(
1 + t

−N(1−l)
θp

)∥∥f ∣∣ Mp
q,∞

∥∥
が任意の f ∈ Mp

q,∞ に対して成立*8． //

これより， ∥∥∥J0
η [u]

∣∣∣ Mr
qr
p ,∞

∥∥∥ ⩽
∫ η

0

χ]0,t[(τ)
∥∥∥S(τ) [|u|γ−1u(t− τ)

] ∣∣∣ Mr
qr
p ,∞

∥∥∥ dτ

⩽
∫ η

0

χ]0,t[(τ)
(
1 + τ

N
θ (

1
r−

γ
p )
)∥∥∥|u|γ ∣∣∣ Mp/γ

q/γ,∞

∥∥∥ dτ(
p

γ
< r < p ⇒

)
⩽ Cη

N
θ (

1
r−

γ
p )+1 ‖u | X‖γ .

*8 局所型空間を考えている都合上，“1+” の出現は避けられない (例えば f(x) ≡ 1 として t → ∞ を考えよ)．しかし，
時間局所可解性を考える上では，これは問題にならない (時刻が小さい部分では第 2項に吸収させれば良いため)．



同様に J1
η についても評価することで，

∥∥J [u] ∣∣ Mp
q,∞

∥∥ ≲ sup
λ>0

{
η

N
θ (

1
r−

γ
p )+1

√
λ

+ η
N
θ (

1
k(r)

− γ
p )+1

√
λ

}
‖u | X‖γ

を得る．ここで，η を λ > 0に応じて最適化すれば supλ>0 {· · · }は定数となり，左辺で t ∈ ]0, T [に
ついて上限を取ることで

‖J [u] | X‖ ⩽ C ‖u | X‖γ

を得る． ////

BM := {u ∈ X | ‖u | X‖ ⩽ M} とおくと，同じノルムで完備距離空間となる．適当にM > 0を
小さく取ることで，写像 J : BM → BM/2 が定まる．

4 主定理
節 3.4での計算と同様に，I[µ]に対する評価を行い (非斉次項の空間は解の空間と γ 倍だけずれた
可積分指数の空間となる)，また Kが縮小写像であることを示すことで，以下の結果を得る．

定理 12. [10, Theorem 1.5(の特別な場合)] θ ∈ ]0, N [とし，γ > γ∗ := N/(N − θ)とせよ．このと
き，以下をみたす δ > 0とM > 0が存在する：
非斉次項 µ が，ある Q ∈ ]1, N(γ − 1)/θγ[ に対して条件∥∥∥µ ∣∣∣ MN(γ−1)/θγ

Q

∥∥∥ ⩽ δ

満たすならば，問題 (P)のある区間 ]0, T [上での解 u が存在して，評価

sup
0<t<T

∥∥∥u ∣∣∣ MN(γ−1)/θ
γQ,∞

∥∥∥ ⩽ M

をみたす． //

• この定理は「最大」の空間における可解性の結果を述べている．µ ∈ Mp
Q (with p >

N(γ − 1)/θγ)なる µ(よりよい可積分指数の空間に入る非斉次項)は，全て可解である．
• 可積分関数の絶対連続性と，方程式の持つ相似構造とを組み合わせることで，Lebesgue空間
LN(γ−1)/θγ に属する「任意の」µは可解であることが従う (適切に T を小さく取る必要はあ
るが)．このことは，実は局所型のMorrey空間を用いていることも効いている．

5 distributionまで話を広げる
いままでのところ，主に写像 J : X → X について考えてきたが，本研究の目標は，可解な非斉次

項 µについての精密な条件を知ることにある；写像
I :Y → X ,

µ 7→ I[µ](x, t) :=

∫ t

0

S(t− τ)µ(x) dτ



について考えることになるが，µ のクラスとして，どのような関数空間 Y を用いるのがよいか？
積分方程式 u = I[µ] + J [u]に戻る．縮小写像の原理で解を構成する際，J : X → X を示すので，

u ∈ X ⇒ I[µ] = u− J [u] ∈ X

すなわち，
∥∥∥∥∫ t

0

S(t− τ)µ(x) dτ

∣∣∣∣ X∥∥∥∥ < +∞

となる．ここで，次のような評価が成り立つ関数空間 Y があれば，それは X における問題 (P)の解
が存在するための，µのみたすべき必要条件を関数空間の言葉で与えていることになる．

‖µ | Y‖ ⩽ C

∥∥∥∥∫ t

0

S(t− τ)µ(x) dτ

∣∣∣∣ X∥∥∥∥
[4] と異なり，解に関数空間に属することを要請している一方で，u ⩾ 0 を仮定していないこと
にも注意せよ (初期値問題については，[7] を見よ)．実はこのような関数空間 Y(のひとつ) は，
Besov–Lorentz–Morrey空間というものを考えることで見つけることができる [10, Theorem 1.10]．
本レポートでは L1

loc の枠組みにおける可解性を扱ったが，Lorentz–Morrey空間を考えたことで，
結果的に [8]の理論を非斉次問題に対して展開し，sharpな可解性の結果を得ることができた．
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